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ANALYSIS OF CONSTRAINED-LAYER DAMPING OF FLEXURAL AND
EXTENSIONAL WAVES IN INFINITE, FLUID-LOADED PLATES

Pieter S. Dubbelday
Naval Research Laboratory, USRD

P.O. Box 568339
Orlando, FL, 32856-8339

U.S.A.

ABSTRACT

This study contains a mathematical analysis of constrained-layer damping
(CLD) in plates of infinite extent, with an emphasis on the physical under-
standing of some special features, including fluid loading. Previous work is
expanded to cover extensional waves. Some essential aspects of fluid loading
may be understood by applying thin-plate theory. Therefore thin-plate theory
of extensional waves in a fluid-loaded plate was developed as a counterpart to
that for flexural waves. The description and examples of CLD follow three
models: the first is an extension of Kerwin's 1959 model, the second is a
hybrid model for which the base plate is treated by exact elasticity theory,
and finally a fully exact model for all three layers. Examples and comparisons
are given.

NOMENCLATURE

c extensional wave speed i index of layers: 1-base plate, 2-
P for thin base plate elastomer, 3-constraining layer
cd dilatational wave speed k wavenumber in plate, k = k'-ia

in base plate material k wavenumber in medium
c3  extensional wave speed for s

thin constraining layer q = a -
c0  wavespeed in medium+ -
o w displacement perpendicular to plate
d. = hi/2; hi-layer thicknessdi 1 1 attenuation coefficient

E. Young's modulus for three
2 layers i  Poisson's ratio for three layers

E. e extensional modulus
1 for three layers; Ee = E/(1-v2) Pi density of three layers

F fluid-loading parameter



G2  complex shear modulus of Po density of medium
elastomer, G2 = 02' (l+il)

aseraaeer, G2=2a stresses at opposite sides of plate
9 complex shear parameter, +'-k)2 ] /

Ee gg'(1i~)= [(k/k0 ) -1]l/2
=G 2/ (k, 2 B3eh2h3) -g(l+ip)0

h 3  characteristic frequency for exten-

r =3/4 for flexural, =1/2 for sional waves in fluid-loaded plate
extensional waves 0 dimensionless frequency, 0 = w/wc

INTRODUCTION

The principle of constrained-layer damping of acoustic waves consists of
attaching a thin elastomer layer with high viscoelastic loss plus a stiff
covering layer to a bar, plate, or structure. This stiff layer forces the
elastomer into shear, with concomitant large loss, as compared with purely
extensional loss in the elastomer without cover layer. Although the loss
tangent of the shear modulus G is almost the same as the loss tangent in the
Young's modulus E, the energy loss in the constrained layer is of the order
1/kh2 of that in an unconstrained layer.

This physical explanation of the effect is represented in a classical paper
by E.M. Kerwin [1]. His model gives good results within the given
restrictions: flexural waves at low frequency in a main plate with thin
additional layers. Extensional waves are not considered, and fluid loading is
not readily introduced.

In order to retain the advantage of Kerwin's model of providing an explicit
algebraic expression for the attenuation coefficient in terms of geometric and
elastic parameters, the model was extended and compared with more exact
formulations, a 'hybrid' model and an exact model [2,3].

In this study the analysis is extended to cover extensional waves. Since
flexural waves were discussed in previous publications [2,3], only some of
their features will be mentioned here. For most combinations of plate and
medium, the flexural wave speed in the plate, which increases from zero at
zero frequency, reaches a value equal to the speed in the medium, at a certain
frequency. Thus one distinguishes radiating and non-radiating ("subsonic")
waves in the plate. This phenomenon does not occur for extensional waves in
most cases.

HIERARCHY OF MODELS

In the case of flexural waves in a fluid-loaded plate, physical insight
was obtained by using thin-plate theory. A parallel thin-plate theory for
extensional waves in a fluid-loaded plate is presented. The formalism for
extensional waves in terms of the hybrid model and fully exact model is the
same as for flexural waves.

The extended Kerwin model includes extensional waves. It is represented by
the following expression,

ak' = (r) B e[1 (c/c3) 2] 2

E 1 e hl [i - (c/c3)2 + g1]2 + P2g 2

The following outline lists the three models for constrained layer damping
used in the examples, with their characteristic properties.



1. Extended Kerwin model
a. Flexural or extensional waves b. Inertia of constraining layer
c. Complex shear parameter d. Wave speed from thick-plate theory

2. Hybrid model
a. Exact elasticity theory for b. Other two layers as in Kerwin

base plate
c. Flexural and extensional waves d. With or without fluid loading

3. Exact model
a. Exact theory for all layers b. Flexural and extensional waves
c. With or without fluid loading

In all the following examples of the analysis the base plate and additional
layers Lave physical and geometric parameters as listed in table I. The
(complex) shear modulus of the elastomer is assumed independent of frequency,
in order to emphasize the mechanical aspects of the technique without
viscoelastic effects.

THIN-PLATE THEORY FOR EXTENSIONAL WAVES IN FLUID-LOADED PLATE

Thin plate theory for flexural waves in a fluid-loaded plate may be found
in Ref.[4]. It appeared difficult to derive an analogous expression for
extensional waves directly. Therefore the problem was approached as follows.

One starts from the structural equations for waves in plates obtained from
exact elasticity theory by integrating and averaging along the direction
perpendicular to the plate. From this, one may derive a thick-plate theory
for extensional waves [5]. Fluid loading is represented by the sum of the
stresses at both sides of the plate, given as q = a+ + a-. Thin-plate theory

follows by dropping terms containing the factor (kd). (In this section all
quantities refer to the base plate.) The result is equivalent to adding a
fluid-loading term F to the familiar equation for extensional waves in a
plate,

[E/(1-v2)] 82 w/x2 + F = p a2w/at 2  (2)

where F is given by

F= [1 - (c/cd) 2 ] (kd)2 qS/(2d). (3)

Assuming a harmonic wave, with space and time dependence expressed by
exp i(wt-kx), where the x-coordinate is in the direction of the wave parallel

to the plate's surface, and introducing a new variable 'r by k2 = k (l+r ),
Eq.(2) is replaced by an algebraic equation in terms of r. For fluid loading

on both sides one has qS = 2 w2 Po w /(k° r) and Eq.(2) becomes

rs - r2 + r [1-(co/Cp) 2] - [1-(co/cd) 2] (4)

where a characteristic frequency w and a corresponding dimensionless
c

frequency 0 are introduced by dc = (p/po) cp2/(c ° d) andfl =bJU



The characteristic frequency w for brass in water is 1.36x106 rad/s, and

thus for the frequency region where thin-plate theory may be applied, the non-
dimensional frequency 0 is very small. As a consequence there exists a small
real root, for small 0, namely

2 - (C/d 2 (5)
1 - (c/c) 2 "

This root corresponds to a non-radiating wave in the plate, with a constant
speed slightly less than the speed in the medium, (for low frequency).

By division, one determines the quadratic equation for the two remaining
complex conjugate roots,

2+ a r + b = O, (6)

(C/c) 2 _(co/cd)2

where a = o p 2 and b = 1 - (c/c) 2

1 - (C/C p )2

One of these gives a wave number with positive attenuation constant a.
In Fig. 1 a comparison is shown of the relative attenuation a/k' ,according

to thin-plate theory and to exact elasticity theory, first for two-sided fluid
loading. Although the boundary conditions for extensional waves cannot be
satisfied for one-sided fluid loading without additional flexural waves, one

might take half the value of qS as given before, and carry this through the
analysis. The results in Fig. 1 show that the attenuation for one-sided
fluid-loading thus computed does not compare well with the exact-elasticity
result.

CONSTRAINED.PLATE IN VACUUM

In Fig. 2, a threefold comparison is shown for the relative attenuation
constant for extensional waves propagating in a constrained plate, without
fluid loading, for three models. The sharp dip in attenuation near 15 kHz is
due to an "equivoluminal model, whereby the tangential velocity component at
the faces of the plate is zero, thus no shear exists in the elastomer layer.
Of course this feature does not show up in the extended Kerwin model.

FLUID-LOADED, CONSTRAINED PLATE

Flexural waves
Various typical features for damping of flexural waves by radiation and

viscoelastic effects may be seen in Fig. 3. One sees that in the high-
frequency range the total attenuation is mostly due to radiation. In the
middle range the attenuation is due to viscoelastic damping in the elastomer.
At the low frequency end a feature appears of high damping due to radiation.
It may be pointed out that this is a consequence of the infinite extent of the
plate; for finite plates this "radiation" would not be expected to be found in
the farfield. See Ref. [3] for further details.



Extensional waves
In Fig.4, a comparison is shown for the relative attenuation constant as a

function of frequency for a constrained plate loaded by fluid on both sides,
on the side of the added layers, and on the opposite side, computed by exact
elasticity theory. One sees that for a large frequency region there is not
much difference between the curves, except for a factor of two between the
double-sided and one-sided fluid loading. At the low frequency end the curves
for the two cases part, while at the high frequency side two of the curves
converge and the third one follows a different path. If one compares this
figure with Fig.l, one sees that the damping due to the elastomer layer does
not make much difference in the total attenuation, except for a different
structure at the high-frequency end.

In all the various configurations for extensional waves studied here, there
is little variation of the phase speed from that for a single, unloaded plate.
This is quite different f.hom the behavior of the phase speed for flexural
waves at high frequencies [3].
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TABLE I. Material and geometric parameters and derived quantities.

Base plate, brass Elastomer layer (hypothetical)

h 10 cm E 1= 104 GPa h 2= 1.24 mm P2 =1100kg/m 
3

3
1 = 0.37 P1 =8500 kg/m GC = 10MPa1.

G1=38 CPa c p= 3765 rn/s Bulk modulus = 1.0 CPa

w c= 1.63 Mrad/s Constraining layer, aluminum

Fluid, water h 3 =2.48mm E 3 =71 CPa

p0 = 9 kg/in c 0= 1481 rn/s Y3=0.33 P3 = 2700k/n
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Figure 3. Flexural wave; exact model. Figure 4. Extensional wave, constrained
i-constrained plate, water on elas- plate. 1-water on both sides; 2-water on
tocer side; 2-single plate, water on ela-stomer side; 3-water 0n opposite
one side; 3-constrained plate in side. Exact model.
vacuum


